The Scheduling Algorithm

Eddie Guo
July 9, 2024

I created this scheduling algorithm to optimize call schedule for physicians and healthcare trainees. This
system aims to create fair and efficient schedules while respecting various constraints and preferences.

Contents
1 Scheduling Constraints 1
1.1 No Back-to-Back Call Shifts 1
1.2 Minimum Interval Between Calls L 2
1.3 Respecting Days Off 2
1.4 Fair Distribution of Shifts e 2
1.5 Handling Constraint Conflicts o 2
2 Main Function: generateCallSchedule 3
3 Key Components and Data Structures 3
3.1 DateTime Handling e 3
3.2 Schedule Representation e e e 3
3.3 Resident Data Structure 3
3.4 Tracking Variables 4
4 Scheduling Algorithm Overview 4
4.1 Resident Mode e 4
4.2 Attending Mode e e 4
5 Algorithm Output 5
6 Key Functions 5
6.1 canTakeCall e 5
6.2 getResidentScore 5
7 Algorithm Details 5

1 Scheduling Constraints

The scheduling algorithm adheres to several important constraints to ensure fairness, compliance with labor
regulations, and resident well-being. These constraints are implemented throughout the scheduling process
and are crucial for generating a valid and effective schedule.

1.1 No Back-to-Back Call Shifts

One of the primary constraints is the prohibition of back-to-back call shifts for any resident. This rule is
implemented as follows:

e When considering a resident for a call shift on a given date, the algorithm checks if the resident was
assigned to a call shift on the previous day.

e If a resident was on call the previous day, they are automatically disqualified from being assigned to
the current day’s shift.

e This constraint is enforced in the canTakeCall function, which returns false if the resident was on
call the previous day.

This constraint helps prevent physician fatigue and ensures compliance with work-hour regulations.

1.2 Minimum Interval Between Calls

Each resident has a max1inX property that defines the minimum number of days that must pass between
their call shifts:

e The canTakeCall function checks the time elapsed since a resident’s last call.

e If the time elapsed is less than the resident’s max1inX value, the resident cannot be assigned to the
current shift.

e This constraint allows for personalized scheduling based on resident seniority, specialization, or other
factors that might influence their call frequency.

1.3 Respecting Days Off

The scheduler respects pre-defined days off for each resident:
e Each resident object includes a daysOff array containing dates when the resident is unavailable.
e The canTakeCall function checks if the current date is in the resident’s days0ff array.
e If the date is found in days0ff, the resident is not considered for that shift.

e This constraint allows for accommodation of vacations, conferences, personal days, and other scheduled
absences.

1.4 Fair Distribution of Shifts
While not a hard constraint, the scheduler aims to distribute shifts fairly among residents:
e The getResidentScore function considers the total number of shifts already assigned to a resident.

e Residents with fewer assigned shifts are given a higher score, increasing their chances of being selected
for future shifts.

e This soft constraint helps balance the workload among residents over the entire scheduling period.

1.5 Handling Constraint Conflicts

In situations where it’s impossible to satisfy all constraints (e.g., no available residents for a particular day),
the scheduler employs a fallback strategy:

o It selects the least constrained resident, potentially violating the max1inX constraint if necessary.
e This ensures that all shifts are filled, even in challenging scheduling scenarios.

e The algorithm prioritizes filling all shifts over strict adherence to the max1inX constraint in these rare
cases.

These constraints work together to create a schedule that is fair, respects resident preferences and limitations,
complies with work regulations, and maintains high-quality patient care by ensuring well-rested physicians.

2 Main Function: generateCallSchedule

The primary function exported by this module is generateCallSchedule, which takes the following param-
eters:

e startDate: A JavaScript Date object representing the inclusive start date of the scheduling period.
e endDate: A JavaScript Date object representing the inclusive end date of the scheduling period.

e residents: An array of resident objects.

e schedulingPreference: A string indicating the preference for schedule optimization.

e schedulerMode: A string indicating whether to schedule for 'resident’ or ’attending’ mode.

e handoverDay: An integer (1-7) representing the day of the week for handovers in attending mode
(default is 1 for Monday).

3 Key Components and Data Structures

3.1 DateTime Handling

The module leverages the luxon library for precise and consistent date and time operations. Specifically:

e DateTime object: Used to represent and manipulate dates throughout the scheduling process. This
object provides methods for date arithmetic, formatting, and comparison, ensuring accurate handling
of time-related operations.

e Date Conversion: JavaScript Date objects (used as input parameters) are converted to luxon DateTime
objects for internal processing, then converted back to strings for the final schedule output.

3.2 Schedule Representation

The generated schedule is represented as a JavaScript object with the following structure:

e Keys: Strings representing dates in the "YYYY-MM-DD’ format. Each key corresponds to a single
day in the scheduling period.

e Values: Strings representing resident names. Each value indicates the resident assigned to the corre-
sponding date.

For example:

{

’2024-07-01’: ’Dr. Smith’,
?2024-07-02’: ’Dr. Johnson’,

// ... more date-resident pairs

}
3.3 Resident Data Structure
Each resident in the residents array is represented by an object with the following properties:

e name: A string representing the resident’s name. This is used as the identifier for the resident through-
out the scheduling process.

e max1inX: An integer representing the minimum number of days that must pass between calls for this
resident. For example, if max1inX is 4, the resident cannot be scheduled for a call more frequently than
once every 4 days.

e daysOff: An array of date strings in the "YYYY-MM-DD’ format, representing days when the resident
is unavailable for calls. This could include vacation days, conference attendance, or other pre-scheduled
commitments.

Example of a resident object:

{

name: ’Dr. Smith’,

maxlinX: 4,

days0ff: [’2024-07-04’, ’2024-07-05’]
}

3.4 Tracking Variables

The algorithm maintains several important tracking variables throughout the scheduling process:

e minIntervals: An object that maps resident names to their respective max1inX values. This allows
for quick lookup of a resident’s minimum interval between calls.

e lastCall: An object that maps resident names to their most recently assigned call date. This is used
to ensure the max1inX constraint is respected and to calculate scores for resident selection.

e totalShifts: An object that maps resident names to the total number of shifts they have been
assigned so far. This is used to maintain fairness in shift distribution and for score calculation.

Examples of these tracking variables:

minIntervals = { ’Dr. Smith’: 4, ’Dr. Johnson’: 3 }
lastCall = { ’Dr. Smith’: ’2024-07-01’, ’Dr. Johmson’: ’2024-06-30’ }
totalShifts = { ’Dr. Smith’: 5, ’Dr. Johnson’: 6 }

4 Scheduling Algorithm Overview
The scheduling algorithm now has two distinct paths based on the schedulerMode:

4.1 Resident Mode
In resident mode, the algorithm fills shifts on a day-by-day basis:

1. Shuffle the residents array for fairness.

2. For each date in the scheduling period:

Filter available residents using canTakeCall.

If available residents exist, select the best candidate using getResidentScore.

Assign the selected resident to the current date.

Update tracking variables.

4.2 Attending Mode
In attending mode, the algorithm fills shifts on a weekly basis:

1. Determine the first and last full weeks based on the handover day.
2. Distribute full weeks attempting to exclude weeks with days off:

e For each full week, find an available attending who can cover the entire week.

e Assign the selected attending to all days in that week.
3. Handle partial weeks at the start and end separately:

e Find available attendings for these partial periods.

e Assign the attending with the least total shifts to cover the partial week.

5 Algorithm Output

The generateCallSchedule function returns a JavaScript object containing:
e schedule: The final generated schedule object, mapping dates to assigned residents.

e totalShifts: An object summarizing the total number of shifts assigned to each resident, providing
a quick overview of shift distribution.

6 Key Functions
6.1 canTakeCall

Determines if a resident/attending can take a call on a given date:

false if d € r.daysOff or shift already assigned
false if d < startDate or d > endDate
canTakeCall(r, d, duration) = { true if no previous call

interval > r.max1inX if resident mode and r.max1linX exists

interval > 1 otherwise

6.2 getResidentScore

Calculates a score for assigning a resident to a date:

totalDays

score = daysSinceLastCall + 10 -
max1inX

— totalShifts)

7 Algorithm Details

Algorithm 1 Generate Call Schedule

1: procedure GENERATECALLSCHEDULE(startDate, endDate, residents, schedulingPreference, scheduler-
Mode, handoverDay)

2: Initialize schedule, lastCall, totalShifts

3: dates < GenerateDateRange(startDate, endDate)

4: ShuffleResidents(residents)

5: if schedulerMode = 'resident’ then

6: FillResidentShifts(dates, residents, schedule)

7 else if schedulerMode = ’attending’ then

8: FillAttendingShifts(dates, residents, schedule, handoverDay)
9: end if

10: warnings < GenerateWarnings(schedule, schedulerMode)

11: return schedule, totalShifts, warnings

12: end procedure

Algorithm 2 Fill Resident Shifts

1: procedure FILLRESIDENTSHIFTS(dates, residents, schedule)

2 for each date in dates do

3 availableResidents < FilterAvailableResidents(residents, date)

4 if availableResidents is not empty then

5: selectedResident < SelectBestResident(availableResidents, date)
6 AssignShift(schedule, selectedResident, date)

7 end if

8 end for

9: end procedure

Algorithm 3 Fill Attending Shifts

1: procedure FILLATTENDINGSHIFTS(dates, residents, schedule, handoverDay)

2 firstFullWeekStart, lastFullWeekEnd < CalculateFullWeeks(dates, handoverDay)
3 DistributeFullWeeks(firstFullWeekStart, lastFullWeekEnd, residents, schedule)

4: HandlePartial WeekStart(dates[0], firstFullWeekStart, residents, schedule)

5 HandlePartialWeekEnd (lastFullWeekEnd, dates|-1], residents, schedule)

6: end procedure

	Scheduling Constraints
	No Back-to-Back Call Shifts
	Minimum Interval Between Calls
	Respecting Days Off
	Fair Distribution of Shifts
	Handling Constraint Conflicts

	Main Function: generateCallSchedule
	Key Components and Data Structures
	DateTime Handling
	Schedule Representation
	Resident Data Structure
	Tracking Variables

	Scheduling Algorithm Overview
	Resident Mode
	Attending Mode

	Algorithm Output
	Key Functions
	canTakeCall
	getResidentScore

	Algorithm Details

